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Abstract. Recently, Alizadeh et al. [Discrete Math., 313 (2013): 26-34] proposed a modification of the
Harary index in which the contributions of vertex pairs are weighted by the product of their degrees. It
is named multiplicatively weighted Harary index and defined as: HM(G) =

∑
u,v

δG(u)·δG(v)
dG(u,v) , where δG(u)

denotes the degree of the vertex u in the graph G and dG(u, v) denotes the distance between two vertices u
and v in the graph G. In this paper, after establishing basic mathematical properties of this new index, we
proceed by finding the extremal graphs and presenting explicit formulae for computing the multiplicatively
weighted Harary index of the most important graph operations such as the join, composition, disjunction
and symmetric difference of graphs.

1. Introduction

All graphs considered in this paper are finite undirected simple connected graphs. Let G = (V(G),E(G))
be a graph with vertex set V(G) and edge set E(G). Let δG(v) be the degree of a vertex v in G and dG(u, v)
the distance between two vertices u and v in G. When the graph is clear from the context, we will omit
the subscript G from the notation. For other undefined terminology and notations from graph theory, the
readers are referred to [3].

A topological index is a number related to a graph invariant under graph isomorphisms. Obviously,
the number of vertices and edges of a given graph G are topological indices of G. One of the oldest and
well-studied distance-based topological index is the Wiener number W(G), also termed as Wiener index
in chemical or mathematical chemistry literature, which is defined [26] as the sum of distances over all
unordered vertex pairs in G, namely,

W(G) =
∑
u,v

dG(u, v).

This equation was introduced by Hosoya [13], although the concept has been introduced by late Wiener.
However, the approach by Wiener is applicable only to acyclic structures, whilst Hosoya matrix definition
allowed the Wiener index to be used for any structure.
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Another distance-based graph invariant, defined [16, 22] in a fully analogous manner to Wiener index,
is the Harary index, which is equal to the sum of reciprocal distances over all unordered vertex pairs in G,
that is,

H(G) =
∑
u,v

1
dG(u, v)

.

In 1994, Dobrynin and Kochetova [7] and Gutman [11] independently proposed a vertex-degree-
weighted version of Wiener index called degree distance or Schultz molecular topological index, which is
defined for a graph G as

DDA(G) =
∑
u,v

(δG(u) + δG(v))dG(u, v).

The Gutman index is put forward in [11] and called there the Schultz index of the second kind, but for
which the name Gutman index has also sometimes been used [24]. It is defined as

DDM(G) =
∑
u,v

δG(u)δG(v)dG(u, v).

The interested readers may consult [6, 10, 12] for Wiener index, [22] for Harary index, [4, 5, 14, 25] for
degree distance and [9, 20] for Gutman index.

Although Harary index is not well known in the mathematical chemistry community, it arises in the
study of complex networks. Let n denotes the order of G. By dividing H(G) by n(n − 1), we obtain a
normalization of H(G), which is called the efficiency of G [18]. The reciprocal value of the efficiency is
called the performance of G [19]. For a given network, both efficiency and performance afford a uniform
way to express and quantify the small-world property. Since the strength of interactions between nodes
in a network is seldom properly described by their topological distances, one need to consider also the
weighted versions of efficiency and performance.

In order to close the gap between the two research communities by drawing their attention to a gener-
alization of a concept, which gives more weight to the contributions of pairs of vertices of high degrees,
recently, Alizadeh et al. [1] introduced an invariant, named additively weighted Harary index, which is defined
as

HA(G) =
∑
u,v

δG(u) + δG(v)
dG(u, v)

.

Some basic mathematical properties of this index were established and its behavior under several standard
graph products were investigated there.

It is known that the intuitive idea of pairs of close atoms contributing more than the distant ones has
been difficult to capture in topological indices. A possibly useful approach could be to replace the additive
weighting of pairs by the multiplicative one, thus giving rise to a new invariant, named multiplicatively
weighted Harary index [1]:

HM(G) =
∑
u,v

δG(u) · δG(v)
dG(u, v)

.

Evidently, the additively (multiplicatively, respectively) weighted Harary index is related to the Harary
index in the same way as the degree distance (Gutman index, respectively) is related to the Wiener index.

In [1], Alizadeh et al. also proposed an open problem: It would be interesting to explore mathematical
properties of multiplicatively weighted Harary index and would be useful to investigate the behavior of
HM(G) under graph operations.

In this paper, we successfully solve this problem. That is, we establish basic mathematical properties of
HM(G), and give the explicit formulae for multiplicatively weighted Harary index of the join, composition,
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disjunction and symmetric difference of graphs.
The paper is organized as follows. In Section 2, we give the necessary definitions and some auxiliary

results. In Section 3, we present our main results. Some examples will be given in the last section.

2. Preliminaries

2.1 Some definitions

Let Kn,Cn,Pn and Sn denote the n-vertex complete graph, cycle, path and star graph, respectively. For a
given graph G, its first and second Zagreb indices are defined as follows:

M1(G) =
∑

u∈V(G)

δ2(u), M2(G) =
∑

e=uv∈E(G)

δ(u)δ(v),

where δ2(u) = δ(u)2. The first Zagreb index can be also expressed as a sum over edges of G,

M1(G) =
∑

e=uv∈E(G)

(δ(u) + δ(v)).

For the proof of this fact and more information on Zagreb indices we encourage the interested reader to
[21].

The first and the second Zagreb coindices of a graph G are defined as follows:

M1(G) =
∑

e=uv<E(G)

(δ(u) + δ(v)), M2(G) =
∑

e=uv<E(G)

δ(u)δ(v).

The Zagreb indices and Zagreb coindices, in particular for the following result, which was proved in [2],
will be helpful in presenting our main results in a more compact form.

Lemma 2.1. Let G be a graph on n vertices and e edges. Then

(i) M1(G) = 2e(n − 1) −M1(G);

(ii) M2(G) = 2e2
−M2(G) −

1
2

M1(G).

2.2 Extremal graphs

It is obvious that adding an edge to G will increase its multiplicatively weighted Harary index. So we
obtain the following result immediately.

Theorem 2.1. Let G be any graph on n vertices. Then HM(G) ≤ HM(Kn).

By the same remark mentioned above, the tree has the smallest HM(G) among all graphs on the same
number of vertices. It is known that the extremal tree for the ordinary Harary index is the path [10]. We
can prove, following the method of [1], that this is also the case for the multiplicatively weighted version.



M. An, L. Xiong / Filomat 29:4 (2015), 795–805 798

Theorem 2.2. Let G be any graph on n vertices. Then HM(G) ≥ HM(Pn).

Proof. By the above argument, we only need to consider trees on n vertices. Let Tn be such a tree, and let v
be any vertex of Tn of degree at least 3 such that at least two of the components of Tn−v are paths. Let those
paths be of lengths s and l,with s ≤ l.We denote the tree induced by the vertices not in the above two paths
by R. Let us call such a tree Ts,l. We transform Ts,l by transplanting the end-vertex of the shorter path to the
end-vertex of the longer path, obtaining a tree we denote by Ts−1,l+1. Evidently, R is not affected by such a
transformation. The transformation is illustrated in Fig. 1. We proceed by comparing the contributions of
various pairs of vertices to the values of Ts,l and Ts−1,l+1. We consider the following two cases.

v v

s l
s−1

l+1

R R

Fig. 1. Transformation for general graphs.

Case 1. s > 1.
Obviously, the contributions of all pairs not including the transplanted vertex and its neighbors remain

unaffected by our transformation. Moreover, it is obvious that the contributions involving the transplanted
vertex are smaller in Ts−1,l+1 than in Ts,l, since the distances involved are greater. The only contributions
that are greater in Ts−1,l+1 than in Ts,l are those involving the former end-vertex of l-path. For a vertex x at
distance d from v such contributions are 2δ(x)

d+l and δ(x)
d+l , respectively. Hence, the net change per vertex u of R is

δ(x)
d+l in surplus for Ts−1,l+1. That surplus is, however, at least offset by the change in the contributions of pairs
containing the new end-vertex of the shorter path. Previous contributions 2δ(x)

d+s−1 become δ(x)
d+s−1 , resulting in

a net loss of δ(x)
d+s−1 per vertex x at distance d from v. Since s − 1 < l, such loss more than offsets the gain on

the longer side, and hence HM(Ts−1,l+1) ≤ HM(Ts,l).
Case 2. s = 1.
We still follow the same pattern discussed above. In this case, our transformation also changes the

degree of v by decreasing it by 1. The only contributions that are greater in HM(Ts−1,l+1) than the corre-
sponding contributions in HM(Ts,l) are those involving the former end-vertex on the longer side. The net
surplus per vertex is again δ(x)

d+l per vertex x of R at distance d from v. Once more, this is compensated by
the loss of δ(x)

d per each such vertex coming from the decrease in the degree of v. It remains to consider
the change in the contributions of pairs (v, y) where y is on the remaining path of length l + 1. All such
contributions in HM(Ts−1,l+1) are smaller than the corresponding contributions in HM(Ts,l), except from the
last two vertices. Their combined contributions are 2[δ(v)−1]

l +
δ(v)−1

l+1 . This quantity, however, cannot exceed
the value of δ(v), representing the loss from the transplanted vertex, since δ(v) > 2[δ(v)−1]

l +
δ(v)−1

l+1 for all l ≥ 2.
Again, HM(Ts−1,l+1) ≤ HM(Ts,l). �

2.3 Composite graphs

Now we introduce the four standard types of composite graphs that we consider in this paper. Let
G1 and G2 be two graphs. The sum of these graphs is defined as a graph G1 + G2 with the vertex set
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V(G1 + G2) = V(G1) ∪ V(G2), and the edge set

E(G1 + G2) = E(G1) ∪ E(G2) ∪ {u1u2 | u1 ∈ V(G1),u2 ∈ V(G2)}.

In other words, we join every vertex from G1 to every vertex in G2. The sum of two graphs is sometimes also
called join, and denoted by G1OG2 ([23]). Obviously, any two vertices of G1 + G2 are either at the distance 1
or at the distance 2.When one of the components is K1, we have a special case called suspension of G,K1 + G.

The next binary operation we consider is the composition of two graphs. For given graphs G1 and
G2, their composition is the graph G1[G2] with the vertex set V(G1[G2]) = V(G1) × V(G2), and two vertices
u = (u1,u2) and v = (v1, v2) of G1[G2] are adjacent if and only if [u1 = v1 and u2v2 ∈ E(G2)] or [u1v1 ∈ E(G1)].
In other words, G1[G2] is obtained by expanding each vertex of G1 into a copy of G2, with each edge of G1
replaced by the edge set of the corresponding G2 + G2. Unlike the sum, the composition is not a symmetric
operation.

The disjunction G1 ∨ G2 is the graph with vertex set V(G1) × V(G2) and edge set

E(G1 ∨ G2) = {(u1,u2)(v1, v2) | u1v1 ∈ E(G1) or u2v2 ∈ E(G2)}.

The symmetric difference G1 ⊕G2 of two graphs G1 and G2 is the graph with vertex set V(G1) ×V(G2) and
edge set

E(G1 ⊕ G2) = {(u1,u2)(v1, v2) | u1v1 ∈ E(G1) or u2v2 ∈ E(G2) but not both}.

The disjunction and symmetric difference are both symmetric operations that share a number of common
properties. The most remarkable is that their diameter never exceeds 2.

For more information about graph products, please see monograph [15]. There is a growing corpus of
literature concerned with the study of graph invariants of composite graphs [e.g., 8, 27]. The following re-
sult, which was proved in that literature, will be used in our proofs. We refer the reader to [17] for the details.

Lemma 2.2. Let G1 and G2 be two graphs. The number of vertices and edges of graph Gi is denoted by ni
and ei respectively for i = 1, 2. Then we have

(a)

dG1+G2 (u, v) =

{
1 uv ∈ E(G1) or uv ∈ E(G2) or (u ∈ V(G1) and v ∈ V(G2))
2 otherwise

For a vertex u of G1, δG1+G2 (u) = δG1 (u) + n2, and for a vertex v of G2, δG1+G2 (v) = δG2 (v) + n1.
(b)

dG1[G2]((u1, v1), (u2, v2)) =


dG1 (u1,u2) v1 = v2
1 u1 = u2, v1v2 ∈ E(G2)
2 otherwise

δG1[G2]((u, v)) = n2δG1 (u) + δG2 (v).
(c)

dG1∨G2 ((u1, v1), (u2, v2)) =

{
1 u1u2 ∈ E(G1) or v1v2 ∈ E(G2)
2 otherwise

δG1∨G2 ((u, v)) = n2δG1 (u) + n1δG2 (v) − δG1 (u)δG2 (v).
(d)

dG1⊕G2 ((u1, v1), (u2, v2)) =

{
1 u1u2 ∈ E(G1) or v1v2 ∈ E(G2) but not both
2 otherwise

δG1∨G2 ((u, v)) = n2δG1 (u) + n1δG2 (v) − 2δG1 (u)δG2 (v).
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3. Main Results

In this section we state and prove our main results, by giving explicit formulae for multiplicatively
weighted Harary indices of composite graphs in terms of Harary indices and multiplicatively (additively)
weighted Harary indices and some simple graphic invariants of underlying components. We begin with
an example. Let Hn =

∑n
k=1

1
k .

Example 3.1. Evidently, if G is a k-regular graph, then HM(G) = k2H(G). The multiplicatively weighted
Harary indices of Kn,Cn,Pn and Sn are computed as follows:

HM(Kn) =
n(n − 1)3

2

HM(Cn) =

{
4(nHn/2 − 1), n is even
4nH(n−1)/2, n is odd

HM(Pn) = n(Hn − 1) + 2Hn−1 −
2

n − 1

HM(Sn) =
1
4

(n − 1)(5n − 6).

It is well known [1] that H(Pn) = n(Hn − 1), so HM(Pn) = H(Pn) + 2Hn−1 −
2

n−1 .

3.1 Sum

Theorem 3.1. Let G1 and G2 be two graphs. Then

HM(G1 + G2) =
1
2

(M2(G1) + M2(G2)) +
1
4

(2n2 − 1)M1(G1) +
1
4

(2n1 − 1)M1(G2) −
1
4

n1n2(n1 + n2)

+
1
2

n2e1(6n1 + n2 − 2) +
1
2

n1e2(6n2 + n1 − 2) + 2e1e2 + (e1 + e2)2 +
3
2

n2
1n2

2.

Proof. By definition of the sum of two graphs, one can see that, for any u, v ∈ V(G1 + G2), the distance
between them dG1+G2 (u, v) is either 1 or 2. In the formula for HM(G1 + G2), we partition the set of pairs of
vertices of G1 + G2 into three cases, denoted by A0,A1, and A2. In A0, we collect all pairs of vertices u and
v that u is in G1 and v is in G2. Hence, they are adjacent in G1 + G2. The set Ai, i = 1, 2, is the set of pairs of
vertices u and v such that they are in Gi.Also, we partition the sum in the formula of HM(G1 + G2) into three
sums Si so that Si is over Ai for i = 0, 1, 2. For S0, we have

S0 =
∑

u∈V(G1)

∑
v∈V(G2)

(
δG1 (u) + n2

) (
δG2 (v) + n1

)
=

∑
u∈V(G1)

∑
v∈V(G2)

(
δG1 (u)δG2 (v) + n1δG1 (u) + n2δG2 (v) + n1n2

)
=4e1e2 + 2n1n2(e1 + e2) + n2

1n2
2.
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Since S1 and S2 have the same structure, it is enough to calculate one of them. By Lemma 2.1 (i), we have

S1 =
∑

{u,v}⊆V(G1)

(δG1 (u) + n2)(δG1 (v) + n2)
dG1+G2 (u, v)

=
∑

uv∈E(G1)

[
δG1 (u)δG1 (v) + n2(δG1 (u) + δG1 (v)) + n2

2

]
+

∑
uv<E(G1)

δG1 (u)δG1 (v) + n2(δG1 (u) + δG1 (v)) + n2
2

2

=
1
2

n2
2

(
n1

2

)
+

1
2

M2(G1) +
1
4

(2n2 − 1)M1(G1) + e2
1 +

1
2

n2e1(2n1 + n2 − 2).

Similarly,

S2 =
1
2

n2
1

(
n2

2

)
+

1
2

M2(G2) +
1
4

(2n1 − 1)M1(G2) + e2
2 +

1
2

n1e2(2n2 + n1 − 2).

Thus, addition of the three sums and simplification of the resulting expression, we obtain the desired
result. �

3.2 Composition

The components of composition enter the operation in a markedly asymmetric manner. That fact is
reflected in the formula for the HM(G1[G2]).

Theorem 3.2. Let G1 and G2 be two graphs. Then

HM(G1[G2]) =n4
2HM(G1) + 2n2

2e2HA(G1) + 4e2
2H(G1) +

1
2

n2
2

((
n2

2

)
+ e2

)
M1(G1)

+
1
4

(4n2e1 − n1) M1(G2) +
1
2

n1M2(G2) + e2

(
2e1n2

2 − 2e1n2 + n1e2

)
.

Proof. Suppose G = G1[G2]. For each vertex x of G1, we label the corresponding copy of G2 G2,x. If two
vertices x, y of G1 are adjacent, then every pair of vertices of G2,x and G2,y are adjacent too. We have

HM(G) =
∑

x,y∈V(G1)

∑{
δG(u) · δG(v)

dG(u, v)

∣∣∣∣∣ u ∈ G2,x, v ∈ G2,y

}

=
∑

x∈V(G1)

∑{
δG(u) · δG(v)

dG(u, v)

∣∣∣∣∣ u, v ∈ G2,x

}

+
∑

x,y∈V(G1)

∑{
δG(u) · δG(v)

dG(u, v)

∣∣∣∣∣ u ∈ G2,x, v ∈ G2,y, x , y
}
.

We partition the sum into two sums, S1 and S2. The first one, S1, runs over all pairs of vertices u and v in
G2,x for each vertex x in G1. The second one, S2, is over all pairs of vertices u and v such that u is in G2,x and
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v is in G2,y for x, y in G1, x , y.

S1 =
∑

x∈V(G1)

∑n2
2δ

2
G1

(x) + n2δG1 (x)(δG2,x (u) + δG2,x (v)) + δG2,x (u)δG2,x (v)

dG(u, v)

∣∣∣∣∣ u, v ∈ G2,x


=

∑
x∈V(G1)

∑
uv∈E(G2)

{
n2

2δ
2
G1

(x) + n2δG1 (x)(δG2,x (u) + δG2,x (v)) + δG2,x (u)δG2,x (v)|u, v ∈ G2,x

}
+

∑
x∈V(G1)

∑
uv<E(G2)

n2
2δ

2
G1

(x) + n2δG1 (x)(δG2,x (u) + δG2,x (v)) + δG2,x (u)δG2,x (v)

2

∣∣∣∣∣ u, v ∈ G2,x


=

1
2

n2
2

((
n2

2

)
+ e2

)
M1(G1) +

1
4

(4n2e1 − n1) M1(G2) +
1
2

n1M2(G2) + e2(2e1n2
2 − 2e1n2 + n1e2).

S2 =
∑

x,y∈V(G1)

∑{
δG(u) · δG(v)

dG(u, v)

∣∣∣∣∣ u ∈ G2,x, v ∈ G2,y, x , y
}

(dG(u, v) = dG1 (x, y))

=
∑

x,y∈V(G1)

∑{
(n2δG1 (x) + δG2 (u))(n2δG1 (y) + δG2 (v))

dG1 (x, y)

∣∣∣∣∣ u ∈ G2,x, v ∈ G2,y, x , y
}

=n4
2HM(G1) + 4e2

2H(G1) + 2n2
2e2HA(G1).

Hence we have

HM(G1[G2]) =n4
2HM(G1) + 2n2

2e2HA(G1) + 4e2
2H(G1) +

1
2

n2
2

((
n2

2

)
+ e2

)
M1(G1)

+
1
4

(4n2e1 − n1) M1(G2) +
1
2

n1M2(G2) + e2

(
2e1n2

2 − 2e1n2 + n1e2

)
. �

In what follows, for convenience, we assume that ei is equal to
(ni

2
)
− ei.

3.3 Disjunction

Theorem 3.3. Let G1 and G2 be two graphs. Then

HM(G1 ∨ G2) =
1
2

(
n3

2 − 4n2e2 + 2n2
2e2

)
M2(G1) +

1
2

(n3
1 − 4n1e1 + 2n2

1e1)M2(G2) +
1
2

M1(G1)M2(G2)

+
1
2

n1n2M1(G2)M1(G1) +
(
n4

1 + 4e2
1 − 6n2

1e1

)
M2(G2) +

(
n4

2 + 4e2
2 − 6n2

2e2

)
M2(G1)

−
1
2

n2M1(G1)M1(G2) −
1
2

n1M1(G2)M1(G1) +
1
2

M1(G2)M2(G1) + M2(G2)M2(G1)

+ 4e1e2

(
e1n2

2 + e2n2
1

)
+ 2n2M1(G2)M2(G1) − n1M1(G1)M2(G2) − 2M2(G1)M2(G2)

+
1
2

(
4n2

1n2e1 − 8n2e2
1 + n2

1e1

)
M1(G2) +

1
2

(
4n1n2

2e2 − 8n1e2
2 + n2

2e2

)
M1(G1)

+ n1n2

(
e1M1(G2) + e2M1(G1)

)
+ 2n1M1(G1)M2(G2) − n2M1(G2)M2(G1)

− n1n2M1(G1)M1(G2).

Proof. Suppose G = G1 ∨ G2. By Lemma 2.2 (c), the degree of vertex (x,u) in G is n2δG1 (x) + n1δG2 (u) −
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δG1 (x)δG2 (u). Thus

HM(G1 ∨ G2) =
∑

x,y∈V(G1)

∑
u,v∈V(G2)

{
δG((x,u)) · δG((y, v))

dG((x,u), (y, v))

}

=
∑

x,y∈V(G1)

∑
u,v∈V(G2)

n2
2δG1 (x)δG1 (y) + n2

1δG2 (u)δG2 (v) + δG1 (x)δG1 (y)δG2 (u)δG2 (v)

dG((x,u), (y, v))

−

∑
x,y∈V(G1)

∑
u,v∈V(G2)

n1(δG1 (x) + δG1 (y))δG2 (u)δG2 (v)
dG((x,u), (y, v))

−

∑
x,y∈V(G1)

∑
u,v∈V(G2)

n2(δG2 (u) + δG2 (v))δG1 (x)δG1 (y)
dG((x,u), (y, v))

+
∑

x,y∈V(G1)

∑
u,v∈V(G2)

n1n2(δG1 (x)δG2 (v) + δG1 (y)δG2 (u))
dG((x,u), (y, v))

.

We consider four sums S1, · · · ,S4 as follows:

S1 =
∑

x,y∈V(G1)

∑
u,v∈V(G2)

{δG((x,u)) · δG((y, v))|uv ∈ E(G2)}

=4e2
1e2n2

2 +
(
n4

1 + 4e2
1 − 4n2

1e1

)
M2(G2) +

(
2n2

1n2e1 − 4n2e2
1

)
M1(G2).

S2 =
∑

x,y∈V(G1)

∑
u,v∈V(G2)

{δG((x,u)) · δG((y, v))|xy ∈ E(G1)}

=4e1e2
2n2

1 +
(
n4

2 + 4e2
2 − 4n2

2e2

)
M2(G1) +

(
2n1n2

2e2 − 4n1e2
2

)
M1(G1).

S3 =
∑

x,y∈V(G1)

∑
u,v∈V(G2)

{δG((x,u)) · δG((y, v))|xy ∈ E(G1),uv ∈ E(G2)}

=2n2
2e2M2(G1) + 2

(
n2

1e1 + M2(G1) − n1M1(G1)
)

M2(G2) − 2n2M2(G1)M1(G2) + n1n2M1(G1)M1(G2).

S4 =
∑

x,y∈V(G1)

∑
u,v∈V(G2)

{
δG((x,u)) · δG((y, v))

2

∣∣∣∣∣ xy < E(G1),uv < E(G2)
}

=
1
2

∑
x,y∈V(G1)

∑
u,v∈V(G2)

{δG((x,u)) · δG((y, v))|xy < E(G1),uv < E(G2), x , y,u , v}

+
1
2

∑
xy<E(G1)

∑
u∈V(G2)

[
(n2

2 − 2n2δ(u) + δ2(u))δ(x)δ(y) + (n1n2δ(u) − n1δ
2(u))(δ(x) + δ(y)) + n2

1δ
2(u)

]
+

1
2

∑
x∈V(G1)

∑
uv<E(G2)

[
(n2

1 − 2n1δ(x) + δ2(x))δ(u)δ(v) + (n1n2δ(x) − n2δ
2(x))(δ(u) + δ(v)) + n2

2δ
2(x)

]
=

1
2

[(
n3

2 − 4n2e2 + M1(G2) + 2n2
2e2 + 2M2(G2) − 2n2M1(G2)

)
M2(G1) +

(
n3

1 − 4n1e1 + M1(G1)

+ 2n2
1e1 − 2n1M1(G1)

)
M2(G2) +

(
2n1n2e2 − n1M1(G2) + n1n2M1(G2)

)
M1(G1)

+ (2n1n2e1 − n2M1(G1)) M1(G2) + n2
1e1M1(G2) + n2

2e2M1(G1)
]
.
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Hence we have

HM(G1 ∨ G2) =S1 + S2 + S4 − S3

=
1
2

(
n3

2 − 4n2e2 + 2n2
2e2

)
M2(G1) +

1
2

(n3
1 − 4n1e1 + 2n2

1e1)M2(G2) +
1
2

M1(G1)M2(G2)

+
1
2

n1n2M1(G2)M1(G1) +
(
n4

1 + 4e2
1 − 6n2

1e1

)
M2(G2) +

(
n4

2 + 4e2
2 − 6n2

2e2

)
M2(G1)

−
1
2

n2M1(G1)M1(G2) −
1
2

n1M1(G2)M1(G1) +
1
2

M1(G2)M2(G1) + M2(G2)M2(G1)

+ 4e1e2

(
e1n2

2 + e2n2
1

)
+ 2n2M1(G2)M2(G1) − n1M1(G1)M2(G2) − 2M2(G1)M2(G2)

+
1
2

(
4n2

1n2e1 − 8n2e2
1 + n2

1e1

)
M1(G2) +

1
2

(
4n1n2

2e2 − 8n1e2
2 + n2

2e2

)
M1(G1)

+ n1n2

(
e1M1(G2) + e2M1(G1)

)
+ 2n1M1(G1)M2(G2) − n2M1(G2)M2(G1)

− n1n2M1(G1)M1(G2).

This completes the proof. �

3.4 Symmetric difference

As mentioned in Section 2, the disjunction and symmetric difference are very much alike. So we present
the following result similar to Theorem 3.3.

Theorem 3.4. Let G1 and G2 be two graphs. Then

HM(G1 ⊕ G2) =
1
2

n2(4n1e2 + n2e2 + 2n2e2)M1(G1) +
1
2

n1(4n2e1 + n1e1 + 2n1e1)M1(G2) +
1
2

n2

[
n2

2

− 8e2 + n2
2(n2 − 1)

]
M2(G1) +

1
2

n1

[
n2

1 − 8e1 + n2
1(n1 − 1)

]
M2(G2) +

(
n3

2 + n2
2

(
n2

2

)
− 8n2e2 + 8e2

2

)
M2(G1) + n1

(
n2

1 + n1

(
n1

2

)
− 8e1

)
M2(G2) + 2[M2(G2) + 2M2(G2)]

·M1(G1) − n2[M1(G2) + 2M1(G2)]M1(G1) − n1[M1(G1) + 2M1(G1)]M1(G2)

+ n1n2

(
e2M1(G1) + e1M1(G2)

)
− 2n1[M1(G1) + M1(G1)][M2(G2) + M2(G2)]

+
1
2

n1n2[M1(G1) + M1(G1)][M1(G2) + M1(G2)] + 2[M2(G1) + M2(G1)]M1(G2)

− 2n2[M2(G1) + M2(G1)][M1(G2) + M1(G2)] + 4[M2(G2) + M2(G2)]M2(G1).

4. Examples

In this section our theorems for multiplicatively weighted Harary indices are illustrated for several more
particular composite graphs. We first give the expressions for suspensions.

Corollary 4.1.

HM(K1 + G) =
1
2

M2(G) +
1
4

M1(G) + e2 +
(
3n −

1
2

)
e.

Next, the formulae for the fan graph K1 + Pn and the wheel graph Wn = K1 + Cn are presented as follows:
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Corollary 4.2.

HM(K1 + Pn) =4n2
−

5
2

n − 4,

HM(K1 + Cn) =4n2 +
5
2

n.

By composing paths and cycles with various small graphs, we can obtain different classes of polymer-
like graphs. Thus, we finally state the formulae of the HM index for the fence graph Pn[K2] and the closed
fence Cn[K2].

Corollary 4.3.

HM(Pn[K2]) =16HM(Pn) + 8HA(Pn) + 4H(Pn) + 25n − 32,

HM(Cn[K2]) =100H(Cn) + 25n.
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[23] D. Stevanović, Hosoya polynomials of composite graphs, Discrete Math. 235 (2001) 237–244.
[24] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
[25] I. Tomescu, Ordering connected graphs having small degree distances, Discrete Appl. Math. 158 (2010) 1714–1717.
[26] H. Wiener, Structural determination of paraffin boiling point, J. Amer. Chem. Soc. 69 (1947) 17–20.
[27] Y. Yeh, I. Gutman, On the sum of all distances in composite graphs, Discrete Math. 135 (1994) 359–365.


